
1. STATIONARY GAUSSIAN PROCESSES

Below T will denote Rd or Zd . What is special about these index sets is that they are (abelian) groups.
If X = (Xt)t∈T is a stochastic process, then its translate Xτ is another stochastic process on T defined as

Xτ(t) = X(t− τ). The process X is called stationary (or translation invariant) if Xτ d= X for all τ ∈ T .
Let X be a Gaussian process on T with mean M : T → R and covariance K : T × T → R. It is an easy

exercise to see that X is stationary if and only if M is a constant and K(t,s) depends only on t− s. In this case
we usually write the covariance as K(t− s) for an even function K : T → R.

Covariance function: What functions K : T → R are possible covariance functions? Clearly K is a valid
covariance function if and only if (t,s)→ K(t− s) is p.s.d. That is, ∑n

i, j=1 aia jK(ti− t j) ≥ 0 for all n ≥ 1 and
ti ∈ T and ai ∈ R. Such a function is said to be positive (semi)definite.

Example 1. Let W = (Wt)t∈[0∞) be a standard Brownian motion in one dimension. Define X(t) = e−t/2W (et)

for t ∈R. Then X is clearly Gaussian, has zero mean and E[XtXs] = e−|t−s|/2 (check!). Since this depends only
on the difference between t and s, it follows that X is a stationary Gaussian process with K(u) = e−|u|/2. This
is known as the Ornstein-Uhlenbeck process. Up to scaling, it is the only stationary Gaussian Markov process!

Example 2. Let ξk be i.i.d. N(0,1). Then ξ = (ξk)k∈Z is a stationary GP on Z with K(n) = δn,0. If a ∈ !2(Z) is a
fixed sequence, we can define a Gaussian process by X = a∗ξ or more explicitly Xn := ∑k∈Z an−kξk.

Since a∈ !2(Z), for each n the series defining Xn converges a.s. Taking a countable intersections, the entire
collection (Xn)n∈Z is well-defined, a.s. It is centered and has covariance E[XnXm] = ∑k an−kam−k = ∑k an−m+ ja j

which clearly depends only on n−m. Hence, X is a stationary GP on Z. They are often called moving-
average processes.

Spectral measure: How to generate positive definite functions? Bochner’s theorem says that they can be
parameterized by finite Borel measures (always measures will mean positive measures) on an appropriate
space. Let T̂ = Rd if T = Rd and let T̂ = (−π,π]d if T = Zd . For a finite Borel measure µ on T̂ , its Fourier
transform is the function µ̂ : T → C defined as µ̂(t) =

R
T̂ eiλ·tdµ(λ).

Theorem 3 (Bochner). The mapping µ→ µ̂ is a bijection from the space of finite measures on T̂ to the space of all
continuous complex-valued positive definite functions on T .

In this correspondence, continuous real-valued positive definite functions on T correspond to symmetric finite
measures on T̂ .

One way implication in this theorem is easy. If µ is a finite measure on T̂ , then
R

T̂ |∑n
j=1 a jeit j ·λ |2 dµ(λ)

must be non-negative. When expanded, it follows that µ̂ is a positive definite function. The other way,
starting with a positive definite function K and constructing the corresponding measure, is non-trivial and
we omit its proof.

If X is a centered Gaussian process with covariance K, then the unique measure µ on T̂ such that K =
µ̂ is called the spectral measure of the process X . The distribution of the Gaussian process is completely
determined by the spectral measure. We shall see how the smoothness of the sample paths of the process
or the ergodicity and mixing properties are reflected in the properties of the spectral measure. For now a
simpler observation.

Exercise 4. Let X and Y be independent centered stationary Gaussian processes with spectral measures µ
and ν respectively. Show that Z = aX +bY is a stationary Gaussian process with spectral measure |a|µ+ |b|ν.

This exercise can be used to decompose a given process into independent processes, for example by
separating the atomic and continuous parts of the spectral measure, or separating the high frequency and
low frequency parts of the spectral measure etc.
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Some examples.

Example 5. T = R. The Ornstein-Uhlenbeck process has covariance K(t) = e−|t| (we have scaled it to lose
the factor of 2 in the exponent). It can be checked (a good exercise if you have not seen it already!) that the
spectral measure is the Cauchy measure dµ(λ) = 1

π(1+λ2)dλ on the real line.

Example 6. Let µ be a purely atomic measure on R or [−π,π] given as µ = p0δ0 + ∑k pk(δλk + δ−λk) where
∑k pk < ∞. Then it is easy to see that the Gaussian process with this spectral measure can be represented as

Xt =
√

p0ξ0 +∑
k

2
√

pkξk cos(λkt)

where ξ j are i.i.d. standard Gaussians (assume that the sums are finite if convergence bothers you). This
shows that the process X is a random superposition of cosines with frequencies and amplitudes given by
the spectral measure. If µ is not atomic, we don’t know if an analogous representation can be written, but
the interpretation of the spectral measure is the same.

Example 7. T = Z and µ = unif[−π,π]. Then the covariance is K(n) = δn,0, i.e., the corresponding Gaussian
process is the i.i.d. process.

Example 8. T = R2 and let µ be the uniform measure on the unit circle S1 = {(x,y) : x2 + y2 = 1}⊆ R2. Then
the covariance function is K(t) = (2π)−1 R 2π

0 ei(t1 cosθ+t2 sinθ)dθ for t = (t1, t2) ∈ R2. It is easy to see that K is
radial, i.e., K(t) depends only on |t| and hence K(t) = 1

2π
R 2π

0 e−i|t|cosθdθ which is the definition of the Bessel
function of order 0, denoted J0. Thus, K(t) = J0(|t|). The corresponding process is known as the random
plane wave.

To understand this further, consider the discrete measure µn that puts mass 1/n at the nth roots of unity
(take n even so that µ is symmetric). Then the Gaussian process can be written as Xn(t) = 1√

n ∑n
k=1 ξk cos(t ·λk)

where λk = (cos(2πik/n),sin(2πik/n)). Thus, Xn is a Gaussian superposition of cosine-waves in directions
given by λk. What is special is that the cosine waves all have the same wave-length 1 (since |λk|1 = 1). Letting
n→ ∞, Xn approaches the random plane wave, which can now be interpreted as a Gaussian superposition
of cosine waves in all possible directions.

Exercise 9. Suppose T = Rd and µ is the uniform measure on the unit sphere Sd−1. Show that the corre-
sponding covariance function is the Bessel function Jd

2−1(|t|).

Exercise 10. If X is a stationary centered Gaussian process on Rd that is also rotation invariant (i.e., X ◦P d= X
for any P∈O(n)). Then show that the covariance function of X must be of the form K(u) =

R ∞
0 Jd

2−1(s|u|)dν(s)

for some measure ν on R+.

2. ERGODICITY

Let X be a stochastic on Rd (we shall use d = 1 for simplicity of notation) defined on a probability space
(Ω,F ,P). Let RR, the space of all functions on R, be endowed with the cylinder sigma-algebra G generated
by all cylinder sets. Then X is a measurable mapping from Ω to RR. Let Q = P◦X−1 be the push-forward of
P under X . Under the translated process Xτ, the measure P pushes forward to Qθ−1

τ where θτ : RR → RR is
given by [θτω](t) = ω(t− τ).

To say that the process X is stationary is the same as saying that Qθ−1
τ = Q for all τ. That is, the group

of transformations θτ act measure-preservingly on (RR,G ,Q). One can then ask about the ergodicity and
mixing properties of this system. We quickly recall these notions.
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A set A ∈ G is said to be invariant if θ−1
τ A = A for all τ. The collection of all invariant sets forms the

invariant sigma-algebra J . To say that X is ergodic means Q(A) = 0 or 1 for all invariant sets A. To say that
X is (weakly) mixing means that Q(A∩ θ−1

τ B)→ Q(A)Q(B) as τ → ∞, for all events A,B ∈ G . Clearly mixing
implies ergodicity.

We now state conditions for the ergodicity and mixing of stationary Gaussian processes14.

Theorem 11 (Maruyama). Let X be a centered stationary Gaussian process on Rd with continuous covariance kernel
K and spectral measure µ. Then X is ergodic if and only if µ has no atoms.

Theorem 12. Let X be a centered stationary Gaussian process on Rd with continuous covariance kernel K and
spectral measure µ. Then X is weakly mixing if and only if K(t) = o(1) as |t|→ ∞. In particular, if µ is absolutely
continuous, then X is weakly mixing.

In proving these theorems we shall need what is perhaps the most basic theorem in ergodic theory.

Theorem 13 (Birkoff’s ergodic theorem). In the above setting where θτ act measure preservingly on (RR,G ,Q),

(1) For any G ∈ L1(Q), we have 1
T

TR

0
G(θτω)dτ a.s, L1

−→ EQ[G
∣∣J ] as T → ∞.

(2) The system is ergodic if and only if 1
T

TR

0
G(θτω)dτ a.s, L1

−→ EQ[G] for all G ∈ L1(Q).

The strategy in proving Theorem 11 will be to directly show that for any G ∈ L1(Q), the averages

(1)
1
T

Z T

0
G(θτω)dτ a.s.→ EQ[G]

To prove Theorem 12 we shall show that for any bounded measurable functions G,F (here Fτ = F ◦θτ) we
have

(2) EQ[F ·Gτ]→ EQ[F ]EQ[G] as τ→ ∞.

Applying to F = 1A and G = 1B we clearly get the mixing property.
As usual in analysis, a useful first step is to reduce the class of functions for which the statement needs

to be proved.

Exercise 14. Let A be a dense subset of L1(Q). If (1) holds for all G ∈ A then it holds for all G ∈ L1(Q).

Exercise 15. For each n≥ 1 and any t = (t1, . . . , tn) ∈ T n and any a = (a1, . . . ,an) ∈Rn, define Gn,t,a : RR →R as
G(ω) = exp{i(a1ω(t1)+ . . .+anω(tn)}. Let A be the collection of all finite linear combinations of Gn,t,a as n, t,a
vary. Show that A is dense in L1(Q).

Exercise 16. Let A be as in the previous exercise. If (2) holds for all F,G ∈ A , show that it also holds for all
bounded measurable F,G.

The proof of the mixing theorem is somewhat simpler and we present it first. For notational simplicity
we take d = 1 everywhere.

Proof of Theorem 12. It suffices to show (2) for F(ω) = exp{i∑n
j=1 a jωt j} and G(ω) = exp{i∑n

j=1 b jωt j} for some
n and some t j ∈ R and a j,b j ∈ R (without loss of generality we can take the same t js by setting some a j and
b j to 0).

14This presentation is taken from the book Gaussian processes, function theory and the inverse spectral problem of Dym and McKean.
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Under the measure Q the variables ωt are jointly Gaussian with zero mean and E[ωtωs] = K(t− s). There-
fore,

EQ[F ] = exp

{
−1

2

n

∑
j,k=1

a jakK(t j− tk)

}
,

EQ[Gτ] = EQ[G] = exp

{
−1

2

n

∑
j,k=1

b jbkK(t j− tk)

}
.

Next,

EQ[F · Gτ] = EQ

[
exp

{
i

n

∑
j=1

a jωt j +b jωt j+τ

}]

= exp

{
−1

2

n

∑
j,k=1

a jakK(t j− tk)+b jbkK(t j− tk)+a jbkK(tk− t j + τ)

}

= EQ[F ]EQ[G]exp

{
−1

2

n

∑
j,k=1

a jbkK(tk− t j + τ)

}
.

If K(u)→ 0 as u→ ∞ then it is clear that (2) holds. Conversely, if K(u) does not go to zero, then we can take
n = 1 and a1 = b1 = 1 to see that mixing condition fails. This proves that the process is mixing if and only if
K(u)→ 0 as |u|→ ∞.

Since K = µ̂, if µ is absolutely continuous, then the Riemann-Lebesgue lemma yields that K(u) → 0 as
|u|→ ∞. This proves the second part of the theorem. !

The proof of Maruyama’s theorem is similar, just a few more computations are needed and we shall
invoke Birkoff’s theorem.

Proof of Maruyama’s theorem. Assume that mu has no atoms. Fix n, t,a and let G = Gn,t,a. Let ZT be the left
hand side of (1). By the exercises, it suffices to show that ZT → EQ[ZT ] a.s.

We shall show that EQ[|ZT |2]− |EQ[ZT ]|2 → 0 as T → ∞. Then the variance of ZT goes to zero and hence
by Chebyshev’s inequality it follows that ZT → EQ[ZT ] in probability. By Birkoff’s theorem we know that ZT

has an almost-sure limit, hence that limit must be EQ[ZT ].
We proceed to compute the first and second moments of ZT . As we have already seen in the proof of the

mixing theorem,

EQ[ZT ] = EQ[G] = exp

{
−1

2

n

∑
i, j=1

aia jK(ti− t j)

}
.

Now for the second moment of ZT . Write |ZT |2 as ZT ZT to get

EQ[|ZT |2] = 1
T 2

TZ

0

TZ

0

EQ

[
exp

{
i

n

∑
k=1

ak(ω(tk + τ)−ω(tk + τ′)

}]
dτdτ′

=
1

T 2

TZ

0

TZ

0

exp

{
−

n

∑
i, j=1

aia j[K(ti− t j)−K(ti− t j + τ− τ′)]

}
dτdτ′.

In the last line we used the fact that ηk := ω(tk + τ)−ω(tk + τ′) are jointly Gaussian and E[ηiη j] = 2K(ti−
t j)−K(ti − t j + τ− τ′)−K(ti − t j + τ′ − τ). Two terms have reduced to one in the exponent because of the
symmetry by relabeling (i, j)→ ( j, i) in the last summand and using K(−t) = K(t).
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Compare with the expression obtained for EQ[ZT ] to get

EQ[|ZT |2] = |EQ[ZT ]|2 · 1
T 2

TZ

0

TZ

0

exp

{
n

∑
i, j=1

aia jK(ti− t j + τ− τ′)

}
dτdτ′.

If we had assumed that K vanishes at ∞ then it would follow that the integral above converges to 1. But we
want to find optimal conditions under which the integral converges to 1.

Therefore, we now bring in the spectral measure to write
n

∑
i, j=1

aia jK(ti− t j + τ− τ′) =
Z

R

n

∑
j,k=1

a jakeiλ(t j−tk+τ−τ′)dµ(λ)

=
Z

R
eiλ(τ−τ′)

∣∣∣
n

∑
j=1

a jeit jλ
∣∣∣
2
dµ(λ)

= ν̂(τ− τ′)

where dν(λ) = |∑n
j=1 a jeit jλ

∣∣∣
2
dµ(λ). Thus,

EQ[|ZT |2] = |EQ[ZT ]|2 · 1
T 2

TZ

0

TZ

0

exp
{

ν̂(τ− τ′)
}

dτdτ′

= |EQ[ZT ]|2 · 1
T

TZ

−T

(
1− |u|

T

)
exp{ν̂(u)}du

We claim that the integral converges to 1. The arguments that follow are standard ones in Fourier analysis.

(1) Firstly, exp{ν̂(u)} = θ̂(u) where θ = ∑∞
k=0

1
k! ν∗k (if ν is the distribution of a random variable Y then θ is

the distribution of Y1 + . . .+YN where Yi are i.i.d. copies of Y and N ∼ Pois(1) is independent of Yis).

(2) The probability measure dγT (u) = 1
T (1− |u|

T )1[−T,T ](u)dt (it is the convolution of unif[−T/2,T/2] with

itself) has characteristic function γ̂T (λ) = sin2(λT/2)
(λT/2)2 . Observe that γ̂T (λ)→ 0 for all λ &= 0, as T →∞. In

fact,
R

γ̂T (λ)dM(λ)→M{0} for any measure M.

(3) Parseval’s relation says that for any two finite measures θ and γ we have
R

θ̂(u)dγ(u) =
R

γ̂(λ)dθ(λ)
(just integrate eiλu against ν⊗ γ in two ways).

Thus, from the third observation we have EQ[|ZT |2] = |EQ[ZT ]|2
R

γ̂T (λ)dθ(λ). As T → ∞, from the second
observation we get

R
γ̂T (λ)dθ(λ) → θ{0}. By assumption, µ has no atom and hence ν has no atom either

and then ν∗n cannot have atoms either (for any n ≥ 1). Therefore, the only atom of θ comes from the first
term and the size of that atom is 1. Therefore, limT→∞ EQ[|ZT |2] = limT→∞ |EQ[ZT ]|2 which is exactly what we
wanted to show. Thus we get ergodicity.

Conversely, assume that µ has an atom, say µ{a} = p > 0. By symmetry of µ, it also has an atom of
the same size at −a. Hence µ∗2{0} ≥ p2. Now take n = 1 and G = G1,0,1 in the previous notation, i.e.,
G(ω) = exp{iω0}. The measure ν obtained earlier is equal to µ and hence θ{0}≥ 1+ 1

2 ν∗2{0}≥ 1+ 1
2 p2. This

implies that limEQ[|ZT |2] > lim |EQ[ZT ]|2. Therefore, Z := limT→∞ ZT cannot be a constant random variable.
Hence the system is not ergodic. !

The converse part is actually simple and does not rely on all the computations. Here is the argument
given by Dym and McKean, which is also of interest as it related the spectral measure to the Hilbert spaces
that we introduced earlier.
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RKHS of a stationary Gaussian process: Let X be a centered, stationary Gaussian process with continuous
covariance K and spectral measure µ. Recall that HX is the closed span of {Xt : t ∈ Rd} in L2(Ω,F ,P). Let
et : Rd →R be defined as et(λ) = eiλ·t . The mapping T : HX → L2(Rd ,µ) defined by T (Xt) = et is easily checked
to define a (surjective) isomorphism (Caution: We are departing from usual convention and considering
complex Hilbert spaces here. In other words, we define L2(µ) as well as HX over the complex field. Needless
to say, there is no real change or difficulty in doing this). Thus L2(µ) is a substitute for HX (how does L2(µ)
relate to HK)?

Define the translations θτ acting on HX by (θτX)t := X(t− τ). Under the isomorphism this corresponds to
the multiplication operator θτ : L2(µ)→ L2(µ) defined by (θτet)(·) = e−τ(·)et(·).

Exercise 17. Let X , K and µ be as usual. Assume that µ has a positive atom at a.

(1) Note that 1a is a non-zero element in L2(µ). Let V = T−1[1a], a non-zero element in HX (as remarked
earlier, note that V is a complex random variable).

(2) For any τ we have [eτ1a](·) = eiτaet(·). Deduce that θτ(V ) = eiτaV .

(3) Deduce that the system cannot be ergodic. [Hint: Consider the random variable |V |.]

3. SMOOTHNESS OF STATIONARY GAUSSIAN PROCESSES

Theorem 18. Let X be a stationary Gaussian process on Rd with a continuous covariance kernel and spectral measure
µ. The following are equivalent. Here smooth means C∞.

(1) X has smooth sample paths, almost surely.

(2) K : Rd → R is smooth.

(3) µ has moments of all orders, i.e.,
R
|λ|pdµ(λ) < ∞ for all 0 < p < ∞.

Remark 19. Even outside the stationary setting, the first two statements must be equivalent, except that
K is a symmetric function on Rd ×Rd . Of course, the third one does not make sense except for stationary
processes.
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